On a Diophantine Equation of Stroeker

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Diophantine Equation of Stroeker

In this paper, we prove that there are infinitely many positive integers N such that the Diophantine equation (x2 + y)(x + y2) = N(x− y)3 has no nontrivial integer solution (x, y).

متن کامل

On a Diophantine Equation

In this note, we mainly obtain the equation x2m − yn = z2 have finite positive integer solutions (x, y, z,m, n) satisfying x > y be two consecutive primes. Mathematics Subject Classification: 11A41; 11D41

متن کامل

On a Quartic Diophantine Equation

The wish to determine the complete set of rational integral solutions of (1) was expressed by Diaconis and Graham in [2, p. 328]. Apparently, the solutions to this diophantine problem correspond to values of keN for which the Radon transform based on the set of all xeZ\ with exactly four ones is not invertible. We thank Hendrik Lenstra who communicated the problem to Jaap Top, to whom we are eq...

متن کامل

On Pillai’s Diophantine equation

Let A, B, a, b and c be fixed nonzero integers. We prove several results on the number of solutions to Pillai’s Diophantine equation Aa −Bby = c in positive unknown integers x and y.

متن کامل

On the Diophantine Equation

In this paper, we study the Diophantine equation x2 + C = 2yn in positive integers x, y with gcd(x, y) = 1, where n ≥ 3 and C is a positive integer. If C ≡ 1 (mod 4) we give a very sharp bound for prime values of the exponent n; our main tool here is the result on existence of primitive divisors in Lehmer sequence due Bilu, Hanrot and Voutier. When C 6≡ 1 (mod 4) we explain how the equation can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2010

ISSN: 1370-1444

DOI: 10.36045/bbms/1274896199